Longhairs

My_Brothers_BarjpgBy The Metric Maven

Bulldog Edition

Not long ago I recall reading a dismissive internet comment which was something on the order of: “the metric system is for scientists and not for regular people.” Clearly, if one understands the simplicity of a metric upgrade for the average person, this statement is completely born of ignorance. If a person uses milliliters, grams, millimeters and so on, then much of everyday life becomes elegant, and the displaced medieval measures are as unwelcome as trying to figure out which number Superbowl XXXVIII was. It was Superbowl 38.

The assertion that “metric is only for scientists” clearly was not a technical statement, so what kind of statement is it? When I read the statement, my mind went back to when I first lived in Los Angeles. The music on the radio was no longer likely to be The Beatles, but was instead The Beach Boys. When an old surf music oldies hour was introduced, the introductory line, (as best as I can recall) was “Remember when boys with buzz cuts were surfers and long hairs listened to classical music?” Indeed, “long hair” was at one time a proverbial phrase. Isaac Asimov in his 1957 essay Victory on Paper,{1]  when discussing the importance of paper chromatography states:

Nor is this ‘impossible’ problem just a matter of idle curiosity on the part of long-haired biochemists who have nothing better to do.

Surfers and long-hairs are viewed quite differently in American culture. Surfing is an athletic, sun-bathed, manly activity, and happens out in the fresh air. Listening to classical music is thought to be a square, intellectual non-activity that men who have a delicate constitution engage in.

This seeming comparison of surf music and classical music actually also contains a succinct statement about American anti-intellectualism. Richard Hofstadter in his work Anti-Intellectualism in American Life makes this point about how teachers are viewed in the US:

The boys grow up thinking of men teachers as somewhat effeminate and treat them with a curious mixture of genteel deference (of the sort due to women) and hearty male condescension. In a certain constricted sense, the male teacher may be respected, but he is not “one of the boys.” pg 320.

I’ve found it a curious truth that US scientists generally use more metric than not, but engineers use almost no metric. Engineering is also a profession that builds bridges, bends steel into aircraft and developed muscle cars of the 1970s. Perhaps this is an oversimplification, but when a statement like “metric is only for scientists” is forwarded, it seems to be directed somewhere other than at a comparison of the utility of medieval measures and modern metric ones. It becomes a “feeling” about what metric is, and it’s not manly. One can almost hear a more modern version “those latte sipping pro-metric guys can have their system, no one’s stopping them. It’s a free country” with the implied attack on their manhood and inveighing against comfort that these sissies would embrace inside of a coffeehouse while discussing impractical literature.

Another aspect of American anti-intellectualism is the idea that practical is always better than theoretical. John Kasson (1822-1910) saw metric as practical and said so much after he lost his 1866 bid to make metric mandatory in the US:

The interests of trade among a people so quick as ours to receive and adopt a useful novelty, will soon acquaint practical men with its convenience. When this is attained–a period, it is hoped not distant–a further Act of Congress can fix the date for its exclusive adoption as a legal system. At an earlier period it may be safely introduced into all public offices, and for government service. [emphasis mine]

In the US, then and now, metric is seen as an effete system created by a bunch of scientific dandys from France, despite its English origins. When discussing The Practical Culture of the US, Richard Hofstadter states: “With all this there went a persistent hostility to formal education and a countervailing cult of experience.” (pg 257). When I was growing up, I often heard these phrases: “I’m a person who works with his hands.”, “You can’t learn this from a book” or “They don’t teach people this in college.”

When metric hearings were held in Congress in 1905 a Mr Gaines asserted the usefulness of the foot for farmers estimating how much volume would be needed to store grain. This exchange took place between Mr George Wetmore Colles a consulting mechanical and electrical engineer which was used to make a point about impractical people:

Mr. Gaines. Now, you yourself do not use the peck or the quart, or the pint. Then you are not an expert in this. Then you are a professor in this.

Mr. Colles. No; I am an engineer.

Mr Gaines. Rainbow people want this metric system, and the practical people do not want it. And when you want to change the bushel into something else you become yourself one of these rainbow chasers. [Laughter] (pg 153)

Mr. Gaines was clearly not pleased that an engineer might side with impractical scientific longhairs and wanted to press the point. This testimony may have been in 1905, but in the late 20th century a supervisor at a company where I previously worked summoned a group of engineers to present a talk he had prepared. His presentation began with a question: “Who has done more for humankind? Albert Einstein or Thomas Edison?” The engineers (mostly electrical engineers) looked at each other, and when polled, unanimously stated that the answer was clearly Albert Einstein. The supervisor had a negative visceral reaction, he was sure it was Thomas Edison, and was furious the group had given “the wrong answer.” What kind of people were they?! Edison is a focal point for the “cult of the practical man” and the supervisor was dealing with a room filled with apostates.

To the less-than-studious engineering supervisor, Albert Einstein was probably the archetypal impractical and effete “long-hair.” Thomas Edison was a “practical” git ‘r done person who had “invented” many practical devices. Today, very few of those devices are of any great importance. The invention of the electric light bulb was an act of brute force and Joseph Swan is certainly its inventor. Edison simply won a blind brute force trial and error race to produce a commercially viable inefficient version. Albert Einstein explained the photoelectric effect, which is part of what would become quantum mechanics and in turn led to the development of highly efficient LED (light emitting diode) “light bulbs” that are rapidly replacing Edison’s “practical design.” Edison ignored the “Edison effect” as he saw no “practical” use for it although it was the key to vacuum tubes that would revolutionize electronics. When cathode ray tubes were developed for television screens, engineers needed to use relativity theory to predict the path of the electrons inside which paint the images. The “impractical” Einstein also invented a new type of refrigerator with his former student Leo Szilard.

The year 1905 was the “miracle year” when Einstein published three amazing papers that changed engineering and physics forever. It was a less than miraculous year for metric testimony in the United States:

Mr. Lanning. Is there any theoretical or practical relation between the electrical unit and other metrical units, or the unit which we use in all ordinary standards of weights and measures?

Mr. Colles. There is a theoretical relation, but no practical relation. It relates in words, I may say, to the velocity of light, and, as I say, it is very abstruse that it does not concern anyone outside of a laboratory, and even then only those engaged in investigations like those of X-rays and other scientific inventions, which have no practical constructive value, and probably never will have. (pg 151)  [emphasis mine]

1905 is a year for great intellectual irony in the US, where a false dichotomy of meaningless “scientific inventions” and useful “actual inventions” is delineated by a “practical person.”

I ran across a letter to the editor in the May 19, 1920 Bridgeport Times and Evening Farmer that railed against current legislation which would make the metric system mandatory in the US. Here is the section that is pertinent:

The meter was never designed by manufacturers for manufacturing. A meter was sort of conjured up by a bunch of purely theoretical scientists. In practical use, the divisions of the metric system are either too great or too small to be of practical value.

Go through any buyer’s guide from A to Z and see if you see any products whose sale or manufacture would be improved by metricalizing their measurements. Manufacturers are the immediate butt of the metrical joke. (It’s a theoretical joke but a practical calamity)

The epistle is reprinted from a company newsletter called “Drill Chips” originally published by The Cleveland Twist Drill Company. This name still exists as a brand in the US.

It is the fate of the metric reformer in the US to be viewed through the lens of American anti-intellectualism. These metric ideas are seen as abstract; they are not “practical” or we would have known about them already and adopted them in the US. The reformer is not a “git ‘r done” guy, but is instead a mamby pamby complainer with impractical “ideas.”

There are many factors that contributed to the lack of metric adoption in the US over the last 150 years. Our lack of a strong central government is cited by Hector Vera as an essential roadblock, but even if it wasn’t, other contributing factors could be America’s inward looking attitude and a belief that if an idea was worthy, a practical American would have thought of it, and the rest of practical America would have already adopted it. The assertion that metric is for scientists and not for regular people is not a technical statement, it’s just a prejudicial one.

[1] Isaac Asimov Only A Trillion Abelard – Shuman 1957 pg 57

Related essays:

Familiarity Versus Simplicity

Metamorphosis and Millimeters

Isaac Asimov — Technophobe

                                                                   ***

The Metric Maven has published a new book titled The Dimensions of The Cosmos. It examines the basic quantities of the world from yocto to Yotta with a mixture of scientific anecdotes and may be purchased here.

Wishing Upon a Star

Alpha-Centauri-Wikimedia-Commons

Alpha Centauri (Wikimedia Commons)

By The Metric Maven

Bulldog Edition

A wish can be a supernatural request which is granted by a supernatural talisman. The song, When You Wish Upon a Star, when modulated onto an electromagnetic (radio/light) wave, that is traveling in a vacuum, moves at 300 Megameters per second. This is only true if the light is traveling in a vacuum (we’ll get back to that), and space is a pretty good vacuum. Einstein was rather clear about the fact that information cannot be propagated faster than the speed of light. This means that any receiving star (other than the Sun) would have to wait years to know that a wish was requested of it.

The Alpha Centauri star system is the closest and it would take light a little over four years for a supernatural request to arrive, so your wish would be delayed by at least that amount of time. Alpha Centauri is also only seen in the U.S. for very short periods of time, and only at latitudes which are south of Houston Texas and is practically invisible. Assuming Alpha Centauri is the ineffective talisman that I expect it is, one would have to wait about eight-years for a non-reply. If you wish on a star that takes light over 75 years or so to arrive, well, then you will not be alive to receive the non-reply. Unless you plan to live to 150 years of age. The odds of that happening are not good.

Astronomers like to conflate time and distance into a strange and exotic sounding description called a light-year. Each of the multitude of stars we view at night has light that emanated at a different time, and so when a star is farther and farther away in distance, we witness how it looked longer and longer ago. Every star has a unique time delay associated with it. The further we look out into the Universe, the farther back in time we see.

When you look at any object or person, you do not see them instantaneously. If a person is 500 mm from you, the light you see has taken about 1.67 nanoseconds to impact your retina. The person is therefore 1.67 light-nanoseconds away from you. If you see an erupting volcano that is 1000 meters distant, the image seen by your eyes has a “distance” of 3.33 light-microseconds. Standing in Denver Colorado, Pike’s Peak (which is visible from Denver), is about 160 Km distant or 533 light-microseconds. Which has more meaning in terms of distance?—160 Kilometers or 533 light-microseconds? This is not really fair one might argue. As far as a person is concerned, this amount of time is instantaneous, and so it makes perfect sense to use distance and forget about the propagation speed of light.

When does a product of the speed of light and time begin to be a distance that makes some sense? There are a lot of choices:

Light-Second 300 Mm (Megameters)

Light-minute 18 Gm (Gigameters)

Light-hour 1.08 Tm (Terameters)

Light-day 25.92 Tm (Terameters)

Light-week 181.44 Tm (Terameters)

Light-month 725.76 Tm (Terameters)

Light-year 9.46 Pm (Petameters)

Light-Century 946 Pm (Petameters)

When the New Horizons probe was near Pluto, it took about four hours for the radio signal to propagate from the Earth to the spacecraft. It was not typically said that the probe was 4 light-hours from the Earth. Why not use light-hours if the conflation of light-speed and distance is so useful? A light second is a 3000 hour long (100 Km/hr) drive, or 3000 car-hours. It is also 7.5 times around the Earth. A light-minute is not enough distance to traverse from one planet to the next in our solar system. The light hour is  a distance from the  Sun to a point between Jupiter and Saturn. The light-day, light week and light month are all well short of our nearest star system, Alpha Centauri. A light century (which no one generally uses) is 100 light years. Betelgeuse is over six times this far, and it can be called a nearby star. The length across the Milky Way galaxy is about 100 000 to 180 000 light-years. Our closest galaxy is Andromeda and it is 2 500 000 light-years distant. The observable universe is about 91 000 000 000 light-years. It is hard to see that this single “unit,” the light-year, is really descriptive over the large dynamic range of the Universe. Enormous numbers cannot be visualized, but they can be categorized, which gives them more intrinsic relative meaning. The metric system is quite useful for accomplishing exactly that.

Furthermore, the light-year has a built-in assumption about what year is used. According to Wikipedia: “As defined by the International Astronomical Union (IAU), a light-year is the distance that light travels in vacuum in one Julian year.” My favorite engineering reference for unit definition has this entry:

Buzzed-Light-YearThe options given for a light year length are:

Anomalistic Light Year: 9.460 980 Petameters

Julian Light Year: 9.460 730 Petameters

Siderial Light Year: 9.460 895 Petameters

Tropical Light Year: 9.460 528 Petameters

There are two questions that in my view are rather separate: 1) How far away is an object based on a linear measurement? 2) How long does it take an electromagnetic wave to get from there to here (or vice-versa)? Astronomers might argue that the light-year is really the best description in their view, but when one looks at a star there is no way to really grasp the amount of time or distance. They all look very similar. The first question one probably wants to know is: “how far is that star?” rather than “how long does an electromagnetic wave take to arrive?”

ShimmerThere is another apparent problem. Suppose I were to ask: what is the radius of the Sun? One might immediately say it is 696 000 Kilometers, but I could also argue that it’s about 100 000 light-years, or 1000 light-centuries in extent! Light does not always travel at 300 000 meters/second, it can travel slower than this value when a dielectric medium is present, such as plastic, glass or gas. It takes a photon about 100 000 years to make its way from the Sun’s center to its surface. The photon also loses energy (changes frequency) as it works its way through stellar plasma, but light is a general term for an electromagnetic wave, and its frequency is not specified by astronomers. They just say “light,” so if a photon is just one millimeter inside of the event horizon of a black hole, would its distance to any other body in the universe, in light years, be infinite?—or even possess an imaginary distance?  Is this a legitimate use of a light-year as a “measurement unit?” Well, no, it is not. Astronomers define a light-year in a vacuum, but Wikipedia also calls it an informal unit and claims it is a length, and should not be confused with time—even though time is in the name of the “unit.” The light-year reminds me of Saturday Night Live’s Shimmer Floor Wax, it’s both a floor wax and a dessert topping. Some astronomers have been less than enthusiastic about the light-year as a “unit.” According to Wikipedia:

The light-year unit appeared, however, in 1851 in a German popular astronomical article by Otto Ule.[18] The paradox of a distance unit name ending on year was explained by Ule by comparing it to a hiking road hour (Wegstunde). A contemporary German popular astronomical book also noticed that light-year is an odd name.[19] In 1868 an English journal labelled the light-year as a unit used by the Germans.[20] Eddington called the light-year an inconvenient and irrelevant unit, which had sometimes crept from popular use into technical investigations.[21]

Astronomers define a light year as the distance light travels in a year in a vacuum; but there is another unit which is defined as the distance light travels in a given amount of time in a vacuum. It is the meter, and it’s the base linear measurement value of the metric system. The meter does not have any unit of time in its name, and so it would alleviate the time confusion immediately. Astronomers who might not be familiar with this unit can convert it to 3.33564 light-nanoseconds for clarity. The metric system also has a unique unit of time, the second. One can use metric prefixes with it to describe intervals of time. It’s about time, it’s about space, but only one at a time, unless it’s a relative place.

Postscript: And Then There Were Two? I have been informed that Myanmar has quietly continued to pursue metrication: