Mill-a-Meter

Belmond Mills Smaller

Old Mill on the Iowa River (click to enlarge) Belmond Historical Society

By The Metric Maven

In my single digit youth I often walked across the “old bridge” in my small town. One could see right off of the concrete bed of this truss type bridge over the Iowa River. I noticed that a small dam existed with an opening near the center of the river. People would often walk out on this dam, which had a height of only 1 to 1.5 meters or so, and fish. One day in the local library I saw a painting that showed an old mill had been on the river. I was quite surprised and asked if it had really been there. The librarian said it had, and was washed away during a flood.

Belmond historic 085

Old Bridge Over The Iowa River    (Belmond Historical Society)

It was a decade or so later that I learned photographs of the “old mill” existed. One of them is inset above. On the far right side of this photo is the location of the “new mill.” A local history1 offers little detail about the design of the “old mill.” Before the old mill, there was an original mill. A dam was constructed and:

The river provided the power for the first flour and sawmill built in 1855 or early 1856 by Dr. Cutler and Archer Dumond.” … “After only a few months’ use, this first mill constructed by the early settlers was washed away by flood waters in the spring of 1856.

In 1857, the next mill constructed was a steam mill. The following year, 1858, was so wet that the steam mill was surrounded by water that season. The machinery was sold and moved to Kansas. Apparently, rather than use the river for a source of power, an experimentation with steam took place.

The “old mill” in the photograph was constructed on the site of the “original mill” in 1858 by G.H. Armsbury. It was both a sawmill and gristmill. It is not stated if it was a water powered mill, but judging from the details of the transaction, it probably was. In 1863, George A. Thompson took charge of the gristmill. His relative Joseph Fulton became a part-owner of the mill, which, in 1870, was the only flour mill in Wright County. In the Spring of 1870 Fulton became entangled in the mill workings when he went to the basement to oil some of the parts. He was killed instantly. Assuming this is a mill that utilized a flat mill stone, they could revolve up to 125 RPM, with a considerable mass.

The mill dam was renovated numerous times before the “old mill” was finally retired. The “new mill” was constructed about 1901 and the “old mill” was:

….being torn down. The timbers are rotting away and it would soon be at the mercy of the first serious wind storm. In the days of long ago, it furnished flour to farmers as far away as Spirit Lake.

The last mill in Belmond Iowa was torn down in 1935, the location of the final millstone is a mystery. The bridge I traversed as a boy was the only structure left from this time period. It was replaced decades ago. I suspect the millstone was a flat affair that was common at this time. It is my understanding that some people actually collect old mill stones which have many unique cutting patterns rendered on their surface. Grain would be fed into the hole at the top. It would work its way down into the meeting line of the rotating upper stone and the static lower one. The milled grain then worked its way outward where it was collected.

I thought about this local history when I was re-reading The Ancient Engineers by L. Sprauge de Camp. The grinding of grain was of paramount importance to the creation of bread. This was a consistent staple: (page 243)

“…Throughout the ancient empires, bread was the principal food. To make it, wheat or barley grain had to be ground into flour. At first the grain was painfully pounded with a pestle in a mortar, as you can still see done in Central Africa.

At a later time, the grain was ground between two flat stones, one of which was pushed back and forth over the other. With such a mill, one person—usually a slave girl—could grind each day only enough grain to make bread for eight people. Hence, in a large household, several such women would have to spend their entire day at the weary task of pushing and pulling the upper millstone. The two ever-present sounds of ancient households were the clack of the loom and the grate of the hand mill.”

The implementation of water power to grind grain, is a perfect example of employing engineering to help keep a community fed, and reduce the horrible mind-numbing boredom of an essential all-day repetitive task.

All of the examples of millstones I had seen were a pair of stone cylinders with a flat interface between them. The small hand versions are called quern-stones. The large millstone examples I had seen using water power were always like this. One stone had patterns cut into it for the grain to be ground and then work its way out from the center where it could be collected by a pan at its edge.

I encountered a pair of surprises when L. Sprauge deCamp offered this drawing of a hand mill from ancient Pompeii:

Hourglass-Mill-AEThis is known as an hourglass mill and was used in Hellenistic and Roman times. I was quite surprised that it was possible to make stone conform to these shapes, but what really confused me were the dimensions. Throughout The Ancient Engineers, all the dimensions are in Ye Olde English. The book was published in 1960, so this is not surprising, but what on Earth were the units m/m? I knew that ca. meant “approximately,” or “about this dimension,” but m/m was strange. I hypothesized that it was millimeters—even though the entire complement of the book is in Olde English measures. The values 900 mm and 700 mm seemed to make approximate sense. What is wonderful about our modern world is that I can do a web search on hourglass mills and see photographs of the mills at Pompeii:

HourglassMillPompeiiThe dimensions in millimeters found on the drawing make sense, but the use of m/m for millimeters was unknown to me at that point. I consulted with Peter Goodyear, and he found examples of guns drills, and clocks that are still designated with m/m for millimeters! I have no idea where the designation m/m originated, but amazingly it is still in use.  Indeed here is a specification table from a Tawianese company that makes paper cutters:

Paper-Cutter-m-slash-mI’m pleased they used millimeters, but amazed and annoyed that m/m is used for mm. This is another example of an introduced usage from another era that continues to complicate our modern world in an unnecessary manner. It also demonstrates just how hard reform that would simplify our world is to achieve.

[1] History of Belmond, Iowa 1856-2006 Belmond Historical Society

                                                                  ***

The Metric Maven has published a new book titled The Dimensions of The Cosmos. It examines the basic quantities of the world from yocto to Yotta with a mixture of scientific anecdotes and may be purchased here.

perf6.000x9.000.indd

Metric Parochialism

OLYMPUS DIGITAL CAMERA

Saddle Mountain — Wikimedia Commons

By The Metric Maven

I’ve noted from time to time reader comments that go something like this: “clearly The Metric Maven’s never lived in a metric country, or he would understand the importance of centimeters.” This of course ignores the fact that Pat Naughtin lived in a metric country and was the person who (along with Sven) first brought me to a realization about centimeters and other kludgy uses of the metric system. It also appears to confirm the proverbial idea of the provincial American in the minds of non-Americans.

What was most amusing for me as I read this criticism, was the knowledge that I had, in fact, lived in a metric country as a boy. I had resided in Mexico. The first metric surprise met us as we crossed from Laredo, Texas into Nuevo Laredo Mexico; it was the road signs. They were all in Kilometers. As we headed down the open road with the sun setting in a burned orange pastel sky, the large reflective road signs only told us how many km it was to Monterrey–no miles–no mas. In those days no American car had a speedometer with graduations in Kilometers, only miles. As we were having a family discussion about this, and whether we were currently speeding or not, it was suddenly realized that a second set of small numbers existed on the speedometer of our Volkswagen Beetle. They were graduations in in km/hr. In a microsecond, the small numbers which had gone almost unnoticed for so long became of paramount importance. We had the Rosetta Stone for travel in Mexico, because of the Germans. Had we been in a provincial American car, life would have been much more complicated.

I looked over at the illuminated dial of the speedometer and realized that we were just above 100 Km/hr, so a good guess at an average rate of speed would be about 100. The distance to Monterrey was about 234 Kilometers, which I realized immediately was around 2.3 hours. It really struck me what an amazing coincidence that was–and how simple.

The metric system continued to surprise me now and then in Mexico. The first time we stopped for gas, the amount of gasoline registered on the pump was far more rapid than I expected. I puzzled for a moment, then it hit me. It’s selling us gasoline in liters. One morning a delightful young woman who made my acquaintance at the American school greeted me. I mentioned it had been very hot and seemed even hotter today. She agreed and stated:

“Yes, very hot, I heard it’s going be almost 40 degrees today!”

My mind screeched to a halt. I babbled in astonishment “Forty degrees?”

She restated her assertion “Yes, 40 degrees.” with a bit of impatience with my confusion and a countenance that insinuated I might be a bit dense.

Suddenly the realization hit me: “Oh, oh, you’re talking metric?” With this revelation, I could see the surprise on her face that I seemed clueless about something so prosaic as the weather, melt into recognition. We were now speaking the same measurement language. An American in Mexico would even have a hard time discussing the weather it appeared.

I have a vague memory of a science magazine I bought there, but a clear one that the magazine had a length which it compared with a test tube’s length—in millimeters.

Life in Mexico for the next few months proved interesting. There were many unfamiliar foods like potato chips with chili and lemon or the section a large white plant of some type with seasoning, but one could almost always get a hamburger anywhere. A woman who was helping my mother with our apartment made what she called azucar tortillas or “sugar tortillas.” They were a pre-teen epicurean delight, and an almost perfect complement to a bottle of Coca-Cola. When the time came to leave Mexico, I asked for the recipe. I had a translator friend present to help with the documentation. Then a stumbling block appeared, the cooking was all done in metric and they had no idea how to change it to American measurement. Once again I was foiled by the lack of metric use in the US. That was the last time I ever had azucar tortillas. I looked on the web as I wrote this, and to my astonishment, I found a recipe for Sugar Tortillas. I made a batch and they are exactly as I recall. The irony is not lost on me that the recipe is in Ye Olde English and I had to convert it back to metric.

Metric_Maven_Sugar_Tortillas_Small

Sugar Tortillas — Back from Ye Olde English Oblivion

The strange assumption (in my view) made by commentators who live in other countries is that they have perfected their use of the metric system, and I should submit to their usage. I have instead come to the conclusion that many metric countries could use metric reform. This leads me to a statement by John Bemelmens Marciano (JBM). In his metric challenged book, Whatever Happened to The Metric System, he complains about the complications of metric measures:

I moved to Rome in 2000 and spent most of my time learning Italian. In order to make dinner, I also had to learn to talk metric, as nearly everything in the market is bought by the etto, which is short for ettogrammo, or hectogram. But measures are a lot harder to learn than most foreign vocabulary. Whereas a casa is the same thing as a house and a macchina precisely a car, an etto is about halfway between three ounces and a quarter of a pound. Our standards—feet, pounds, quarts, degrees—are nouns, which we conceive as something concrete. To think of them as anything different takes a serious taxing of the brain. (page 5)

The exclusive use of grams allows one to use integers for everyday values of mass. A hectogram is 100 grams. This is the mass of a hamburger that I make on a regular basis. I go to my meat market and ask for 0.45 pounds and when I get home it’s very close to 200 grams. I measure and make two 100 gram burgers (give or take a couple grams). When one looks at the masses offered in a British supermarket, they are in grams or Kilograms alone. There are no decagrams or hectograms. The British—who are still not completely metric—clearly saw the simplicity of grams with integer values and don’t bother with the prefix cluster around unity. I suspect that because the UK waited so long to become metric, that when they did, the British were more thoughtful about its implementation. Countries like France (1795) and Italy (1861) transitioned without the 20/20 hindsight that Australia would utilize a century or so later. In my essay Familiarity Versus Simplicity we see a 19th century American pro-metric organization pushing for an amazing amount of unit proliferation within the metric system in 1877. I’ve had many discussions about the implementation of the metric system in the US and as we are essentially the last, we should do our best to implement it in the most streamlined fashion possible.

Hector-Grams

Click to enlarge

JBM lived in Italy and found the adjustment to the language easier than coping with their weights and measures. He complains that:

Americans in Europe are constantly being called upon to defend their country against all sorts of attacks. Why do you Americans think you should be different? Why can’t you admit when someone else’s way is better? Europeans find our system of measurement a perfect example of our stubborn stupidity. Why on earth do we insist on keeping such a nonsensical, archaic system of measures when there is another system that makes perfect sense and is used by the entire rest of the world?

In answer to such questions, I at times acted like Wolfe’s “good little colonial,” but I did think that Europeans do certain things better than Americans. In my heart of hearts, however, I never believed that one of them was the metric system.” (page 5-6)

JBM then managed to write an entire book with metric in its title without bothering to learn anything about the metric system. If he had he might have questioned the usage, not the system.

I had an odd encounter a couple of years back at an engineering meeting. The device we were building was to be for a European country. Strangely they used a Canadian company as a supervisory contractor, and I found myself across a table from three engineers who were all from separate European countries. We were going over the specifications and the measured performance of the device when one of the foreign engineers had had about enough. He was tired of seeing inches, foot-pounds and all of the Ye Olde English that permeated the US engineering work. He pointed out that the European country who had funded this project specified it to be exclusively in metric. The other U.S. engineers (working for another company) began an attempt to defend the incredible amount of pigfish introduced into this “metric only” design. The European engineers would have none of it. One began to castigate the US for not converting to the metric system, and the US engineers in particular for fighting it.

The engineers in the room took note that I had remained quiet throughout the brouhaha—which they realized was a bit of an anomaly. The lead European engineer queried me for my thoughts. I took a breath and said (as best as I can recall):

I completely and totally agree with you. The US should have become metric years ago. It is an embarrassment that we have not. If I had my way we would change TOMORROW. However the use of metric by metric countries is often kludgey and poorly implemented. You have several of your specifications in centimeters, this is poor practice. The Australians use millimeters for building construction and never need a decimal point. If we are using millimeters with a decimal point, you know it’s engineering precision. There are many other effective ways to present metric data and specifications that I would be glad to discuss afterward.

One US engineer in the room actually gasped when he heard the Australians build their houses with all metric in millimeters. This was before I found out that the UK also uses millimeters. After one US engineer thought about it he said: “sweet!” The European engineers across from me had a look of surprise and seemed uncertain what to say. The US engineer in charge of all the specifications began removing centimeters with decimal points and changing them all to integer millimeters. Indeed when we needed a decimal point with millimeters, it was for precision parts. I also insisted on changing values like 0.012 millimeters to 12 micrometers. US engineering drawings with metric dimensions are generally in millimeters.

JBM could not offer a statement like mine to the Italians, because he knew nothing about the elegant use of the metric system. After he wrote a book, ostensibly about the metric system, one might expect that he would know enough about it to realize the poor usage he described. It was not like this information was hidden. I was writing my blog at that time. Pat Naughtin’s videos, missives and newsletters were and are on the web. At a certain point, this sort of ignorance by an author who proclaims to know enough about the metric system to author an anti-metric polemic speaks for itself. One can remain provincial even if they have traveled extensively, and be worldly even if they have never ventured outside of their city.