Fossilized Units

CoverBy The Metric Maven

Bulldog Edition

Recently I watched Elizabeth Kolbert give a lecture on Book TV about her book The Sixth Extinction. It was quite engaging. I put off purchasing the book as a lot of its contents were familiar. During a protracted period of free time I purchased a paperback copy. I sat down and began to work my way into the book. There were three pages of quotations which praised the writing and content. Then the title page, followed by the edition page. A page with quotations was next and then a table of contents. It was all very normal and snooze-worthy.

Then I hit a page entitled Author’s Note. I have reproduced it below:

Metric DisclaimerThe first clause of the first sentence just hit me like a slap. Here is a book, which is essentially about science, and asserts that “scientific discourse” uses the metric system, but we will not be using it in this book. The word discourse is about written and spoken communication, which 95% of the worlds population, scientific or not, uses the metric system to accomplish. There is 5% who do not, and they make their entrance after the comma.

The next assertion is that Americans “think in terms of miles, acres, and degrees Fahrenheit.” When I read this to Sven, he said exactly what was in my mind: “think?” Miles often act as a proxy for time, but seldom would anyone be able to walk along a stretch of the Bonneville Salt Flats and mark off a mile by estimation. I’ve asked farmers several times “how many football fields are there to an acre?” I’ve not met one that knew the answer. An American football field is about 6400 square yards. An acre is 4840 square yards and so an acre is smaller than a football field. Not even the average US farmer has any idea of the size of an acre.

I decided that as I read the book, I would keep track (as best as I can) of all the uses of measurements in the book. I was curious as to how many units would need to be changed for a readership which is outside of the US, that also speaks English, and uses metric.

I did my best to mark pages with units and tally them:

feet: 33    inches: 13     miles: 13    square miles: 9   acres: 6    pounds: 5

tons: 4 (?)  metric tons: 3   yards: 2    meters: 2   micron: 2   Fahrenheit: 2

pH:2   ounce: 1  quart: 1 megatons TNT: 1 hectare: 1    square foot: 1

parts per million: 1  square meter: 1

We see that Ms. Kolbert appears to have a preference for feet, followed by a tie between inches and miles.

Despite her best effort, the metric system sneaks its way into the prose. On page 85 and 154 they are embedded inside of quotations from scientists. There the author decided not to convert and put values in brackets.

Strangely the word micron appears twice in the book in prose generated by Ms. Kolbert:

Several groups of marine organisms came within a micron or two of annihilation. (88)

Riebsell has found that the groups that tend to fare best in acidified water are plankton that are so tiny—less than two microns across—that they form their own microscopic food web (119-120)

The first quotation is a metaphor, but it used a value from the metric system. In the second, a numerical estimate of magnitude is given, and so the unit is supposed to represent a range of metric values. The micron is an out-of-date term for the micrometer. What I’ve come to suspect is that Americans will use this unit, and incorrectly believe it’s part of our Ye Olde English arbitrary grouping of units.

Ms. Kolbert also uses “metric tons”:

Since the start of the industrial revolution, humans have burned though enough fossil fuels—coal, oil, and natural gas—to add some 365 billion metric tons of carbon to the atmosphere. Deforestation has contributed another 180 billion tons. Each year we throw up another nine billion tons or so, an amount that’s been increasing by as much as six percent annually.

It goes almost without saying, that using the term “metric ton,” instead of the proper term, Megagram, helps to start the confusion. The next two units cited are only called tons, not tonnes (which I also would do away with). Did she suddenly switch from metric to long or short tons in Ye Olde English?—or did she assume we would assume “metric tons.”

On page 200 a small bat is described:

They’re little—only about five inches long and two-tenths of an ounce in weight.

When we write the fraction symbolically, it’s 2/10, which my extensive Ye Olde English training tells me should be written as 1/5, so that Americans can “think in terms of ounces.” Is it possible she uses tenths because she can’t keep away from decimals—like those often found with the metric system?

Hectare is also found within a quotation on page 189, and square meters exists exactly once that I count, and was used by the author, but still refers to a number which was probably used by the researchers:

More recently, American researchers cracked open chunks of corals to look for crustaceans; in a square meter’s worth collected near Heron Island,…..

If Americans think in Ye Olde English, why didn’t she use 10.76391 square feet?—or 1.19599 square yards?—or perhaps 0.000 247 104 acres?

It seems almost juvenile to attempt to eschew metric. “Don’t use the m word around Americans little Johnny, it’s not polite—and they won’t understand it.” Instead we are served up a smorgasbord of fossilized units in place of a more succinct and expressive number of metric ones. Nothing demonstrates how provincial America is, when it comes to science, more than the idea that publishers need “special” books for our “special” country. Indeed with our need for medieval units, why should it be surprising that we have a medieval view of science? Other countries purposefully drove the extinction of non-metric units long ago. It’s one extinction I wish would occur in the U.S., so that we might better understand the Anthropocene extinction that’s underway, and better determine any course of action we might take. What we find instead are fossilized minds, using fossilized units, to describe fossilized creatures. Why would we expect anything other than a fossilized outcome?

The Metric Mess is Hard Wired in The US


By The Metric Maven

Bulldog Edition

Skeez was a person who seemed to be born interesting. He obtained his nickname from a character called Skeezix in the comic strip Gasoline Alley. The comic strip itself is unusual in that Skeezix arrives as a baby on a doorstep and ages as time goes on. Skeez spent much time at his cottage on the shore of a nearby lake. One day I noticed a new bust among his eclectic collection of objects; it was Charles Dickens. Skeez then told me that Dickens had a story about an innkeeper who was so cheap he counted the number of beans he put into his soup, and that’s where the term “bean counter” arose. He was as close to a polymath as I have ever known. When he passed away I ended up with small gargoyles that he had brought back from France during World War II. I have an African shield with a weapon which was used to kill tigers, as well as other books and notes he left behind.

Recently I ran across a an RCA Radiotron Reference Book from 1940 which Skeez had owned. Inside, it contains a small snapshot of how the metric system was viewed by electrical engineers in 1940. It appears that US engineers saw the metric system as a simple drop-in substitute for Olde English measures. For instance, under pressure they equate pounds per square inch to Kilograms per square centimeter. No pascals. The equivalence of kilograms (mass) with pounds (force) is a strange misunderstanding in a reference like this—unless they meant Kilogram-force. It is clear that again Americans see the centimeter as a pseudo-inch and just substitute away without any measurement introspection. I’ve not found a millimeter mentioned in this reference.

It also has a list of miscellaneous conversions that have a couple of interesting aspects. First I had no idea there was a unit of metric horsepower. Apparently notion of horsepower was still considered so important in 1940 that a metric version needed to be defined. Apparently metric horses have less strength than Olde English horses. The definition does not seem to even involve a horse:

DIN 66036 defines one metric horsepower as the power to raise a mass of 75 kilograms against the earth’s gravitational force over a distance of one metre in one second;[13]

The other odd aspect is that meters show up with an er ending, but litre is spelled with re. I’ve often wondered when it was decided, and by whom that in the US we would use er rather than re. Here the situation is mixed.

What really caught my attention, and is the actual subject of this essay, are the tables on wire.  American copper wire is designated in American Wire Gauge (AWG). I have made my view known concerning the vacuous non-term gauge in a previous essay. We note that along the left column is the AWG number. AWG was first used as a designation in 1857. The diameter of the wire is then given using the informal feral unit known as the mil. A mil is a slang term for one-thousandth of an inch—at least in the US. In metric countries it’s a slang term for a millimeter as I understand it. As the gauge number increases, the diameter decreases.

There is also a column to the right of the diameter of the wire in mils, which is the area in circular mils. Let’s take an easy example, say AWG 10, which is a solid wire with  a diameter of 101.9 mils. Now we know the area of a circle is π multiplied by the radius squared.  The answer to the computation is 8155 square mils. But wait–the value in the area column is actually 10 380 circular mils. Well, that’s because apparently our engineering founding fathers, in their infinite wisdom, decided that dividing the area up into the number of circular areas of one mil was the best way to do it. To get circular mils you just square the wire diameter in mils. This produces a value that is not directly usable for any common engineering calculations. The resistance of a solid wire is proportional to the cross-sectional area, and circular mils are essentially a gauge number for area and not a defined area. We have inherited this strange way of determining the area of solid copper wire without questioning its sanity. It also illustrates once again that our Olde English set of measurements has nothing in common with a system. To make matters worse, Wikipedia decided to use the term kcmil for kilo-circular-mil in their wire table. I wish metric prefixes would only be used with metric units, and not feral ones, or medieval ones.

Another page in the RCA Radiotron Reference Book has the number of winding turns which make up a linear inch. For example, the Brown and Sharpe (i.e. AWG) Gauge Number is given on the left. We then see that for enamel coated wire one needs 7.6 turns of AWG 8 wire to have a coil which is one inch in length. This data is useful for computing how long an inductor might be for an electrical engineer.

If one were rationally using the metric system, one could easily compute any of these values from a table which gives the wire diameter in millimeters and the area in millimeters squared. If the wire manufactures were to use preferred numbers with metric diameters, then it would simplify matters further. Their would be no more indirect designation of sizes with meaningless gauge numbers. The values would be directly understandable in millimeters. Let’s suppose we have a wire of 1.25 mm diameter, we would know immediately that ten turns is 12.5 mm. We could use AWG 16 which after we consult the table is seen to have a diameter of 50.8 mils. We then know that ten turns is 500.8 mils, divide by 1000 to get the value in inches or 0.5008 inches. Alternatively, we could have started with a direct metric designation of 1.291 mm and ten turns is immediately seen to be 12.91 mm. Starting with the metric diameter, one knows this is the width of a single turn. Using this, one can quickly evaluate 1/1.291 mm on a calculator which is 0.775 turns per millimeter. To get 10 millimeters it would take 7.75 turns. start with a metric wire diameter and one can quickly compute anything one needs–using common mathematics.

Incidentally the gauge designations for copper wire are not standard across types of wire, so one can’t be certain what diameter other wires might be when  given a gauge number. Clearly,  if the diameter of a wire in milimeters is given, or another appropriate metric length (e.g. micrometers), this allows one to immediately compute any appropriate parameter. Here is an illustration from a vendor who sells wire in Australia:

The wire industry in the US has been using this kludged up system since 1857 and has done nothing to introduce reform. This clearly shows to me that one needs to have a government mandate, like that implemented by Australia, which mandates metric. The voluntary part for industry is how they will introduce metric. If they have any sense they would take the opportunity to reform their industry with preferred numbers, or in some other rational manner. Standard DIN Sizes using ISO6722 in terms of mm² look like a good idea to me. But how they would implement the change would would be up to them—and in ‘merica they just might use “soft” metric and preserve familiarity over simplicity along with 19th century measurement practice. Until then, this mess is hard wired in the US.