Joule in the Crown

By The Metric Maven

The creators of the television series Futurama had a question about money in the future. Would there be any? After deciding there probably would be, they speculated about what form the currency might take. An early suggestion for a currency basis was the joule, but in the end they opted for the dollar. The joule seemed like a much better idea to me, what is more important to the “modern” world than energy? Energy has made life luxuriant when compared with the life our forefathers (and foremothers) experienced. The joule is the unit of energy in the metric system and would be universally recognized—well except in one country.

Recently a fellow from the local energy company knocked on my door and announced he needed to work on the gas meter. Apparently in the mid-1990’s a wireless reader was installed so it could be read remotely. The battery was at the end of its life and so it was to be replaced. I watched as the technician unscrewed the existing meter module, which has its units in cubic feet. He then replaced it with an identical module, which in the year 2014 still reads out in cubic feet of gas.

My utility company sends me a bill for energy usage each month. The word energy is even in their corporate name. Below is a scan of a recent bill’s comparison information section:

The gas and electric energy usage is offered in Kwh per month and in therms respectively. The Kwh stands for kilowatt-hours. A watt is a joule per second, so multiplying a value in watts by hours is pigfish talk. The recognized unit of time in SI is the second. For this bill, the first energy value given is 928 Kwh for the electrical energy used, but energy is internationally described in joules. When all the conversions are done, the electrical energy used for the month in SI is 3341 megajoules.

The natural gas usage is assumed to be in Therms. So what is a therm?  Well, in the US, it’s 100 000 BTU, and BTU are British Thermal Units, but not the British Thermal units used by the British, those are a bit different. These are American British Thermal Units—you know—the patriotic kind. Gas meters don’t directly measure the energy delivered, but instead the volume of gas delivered. According to Wikipedia:

Since (Natural Gas) meters measure volume and not energy content, a therm factor is used by (Natural) gas companies to convert the volume of gas used to its heat equivalent, and thus calculate the actual energy use. The therm factor is usually in the units therms/CCF. It will vary with the mix of hydrocarbons in the natural gas. Natural gas with a higher than average concentration of ethane, propane or butane will have a higher therm factor. Impurities, such as carbon dioxide or nitrogen, lower the therm factor.

The volume of the gas is calculated as if it was measured at standard temperature and pressure (STP). The heat content of natural gas is solely dependent on the composition of the gas, and is independent of temperature and pressure.

Therms “Explained” for Consumers.  It is noted that 10 therms is a decatherm (Dth) and not a dth as one might expect. This is very “metricy” sounding but clearly not metric. Therms are BTUs  (click to enlarge)

So we have to have a temperature correction, and apply a therm factor which is in therms/CCF. So what is a CCF?  Well, it’s centium cubic feet or 100 cubic feet. So  the first C is the roman numeral C and stands for 100. The second identical C stands for the word cubic and F is for foot. It is sometimes alternatively written as Ccf. MCF is also used for 1000 cubic feet. The M standing for the Roman numeral for 1000 The correction factor is used to calculate the value as if it were at STP (i.e. standard temperature and pressure). Obviously, accurate values for temperature are important in determining accurate values of natural gas usage. I assume that the average daily temperature has some relationship to this required correction factor. It does not have an obvious entry on my bill. Here is what my energy company states:

Therm Multiplier

Gas usage is defined in Therms, a measure of the heat, or energy content of natural gas in a billing period. One Therm equals 100,000 British Thermal Units (Btu). The energy content of gas changes depending on its source, the altitude and temperature at which it is delivered. After your meter measures your usage by volume (in hundreds of cubic feet and appearing on your bill as “Measured Usage”), this volume is multiplied by the Therm Multiplier to determine the units of energy consumed.

Kwh “Explained” for Consumers (click to enlarge)

The multiplier is not broken down any further and does not spell out the individual contributions. Apparently the temperature, altitude, energy content and such are all wrapped into the Therm Multiplier. The comparison section on my bill is strange, as it has natural gas printed on a line above electric as if the top line is gas, and the bottom is electric. What appears to be the case is that the Kwh value (yes I used a capital K) is the amount of electrical energy usage and the therm value is the natural gas energy usage. It is assumed the customer knows and understands this energy demarcation from the Account Summary they’ve presented.

The most straightforward way for both electric and gas usage to be described, would be in terms of energy usage with a single, simple, internationally recognized unit, but they choose not to do this. Instead, the company uses kilowatt-hours and therms. In the case of kilowatt-hours, it is a pigfish unit, which is metaphorically based on metric, but not the actual metric unit for energy, and for therms it is a semi-imperial system unit for energy. Neither of them use the internationally  accepted unit for energy—the joule.

The comparison section of my energy bill could have been written  in a  much, much clearer way, that anyone could understand, using the metric system and gigajoules:

Comparison Information

Metric Comparison (click to enlarge)

When the bill is written this way, one can immediately see the difference in direct energy cost per gigajoule between Electric and Gas. Electricity is 4.85 times more expensive per joule when compared with natural gas. One can assume that the electric usage is essentially for operating appliances and gas is used for heating, just by looking at the energy usage from this year to last. This year was sixteen degrees colder than last year, and the amount of gas usage in gigajoules was different by a factor of 2.6. The previous energy use was lower for the warmer average temperature as one would expect. One also notices what is missing in this table, the comparison cost per gigajoule from the previous year for electric and gas. This would be a very useful way to gauge the change in cost from year to year. The way the energy bill is originally written one could easily confuse the columns. When presented this way, it is clear.

The way the energy usage is presented in the actual/original bill does not allow a consumer to directly compare energy prices—which are offered by an “energy” company. This is because two non-metric proxy units are used, kilowatt-hours and therms, which have a conversion factor between them of approximately 29 (i.e. 1 therm = 29.307 kilowatt-hours).

One cannot be certain about the origins of the format of the bill I received, but I could not help but think about the word confusopoly, which was introduced in Scott Adams’ book The Dilbert Future. According to Wikipedia:

The word is a portmanteau of confusion and monopoly (or rather oligopoly), defining it as “a group of companies with similar products who intentionally confuse customers instead of competing on price”. Examples of industries in which confusopolies exist (according to Adams) include telephone service, insurance, mortgage loans, banking, and financial services.

I would like to add energy companies to the list.

Australian Gas Meter — Photo by Peter Goodyear

Electricity and Gas are pretty basic, both are sold by energy content, so despite the view they are public utilities, one can only wonder if they are not following the confusopoly model when they present bills in Kilowatt-hours and Therms. My rework of my utility bill certainly looks simpler to understand than the one that uses “our traditional measurements.” When the metric system is implemented, people can readily see it’s a system.  When energy is discussed in any context using the metric system, it is always joules, so the energy content on food packages are in kilojoules, as is a person’s energy bill in gigajoules. The metric system allows for a more integrated and systematic understanding of the world by everyone. There will always be those who will try to use metric in a non-transparent manner, but it takes much more effort than when using the potpororri of “traditional” measures currently established in the US. The joule in the crown for energy description is the joule. No matter what energy is under discussion:

Australian Subway napkin with food energy in kilojoules (kJ).  An average person burns (i.e. radiates as heat) about 169 000  kJ per month (169 MJ) (courtesy of Peter Goodyear — click on image to enlarge)
US Subway Napkin with Calories (kilocalories) and grams of fat — The word energy does not appear on the  US napkin (click to enlarge)

Postscript:

On a side note, New Scientist on 2014-01-04 related that since the UK phased out incandescent light bulbs there has been a considerable drop in energy usage. They state:

The average amount of electricity needed annually to light a UK home fell from 720 kilowatt-hours in 1997 to 508 kWh in 2012, a drop of 29 percent.

So  the average energy use by a UK home in 1997 was 2592 megajoules/year  and in 2012 was 1829 megajoules/year

Unfortunately New Scientist can play fast and loose with energy quantities and power values. On 2014-03-08 in an article about using batteries for energy storage from wind power they state on page 20:

Last year California passed legislation requiring the state’s energy companies to create more than 1.3 gigawatts of energy storage between them by 2020.

One could blame this technical faux pas on scientifically illiterate California legislators, but one would expect New Scientist to note this mistake, and possibly comment on it. Energy storage is in joules, the amount of energy flow out of the batteries is watts (joule/second). It is like equating the amount of water behind a dam with the flow rate of water leaving it.


If you liked this essay and wish to support the work of The Metric Maven, please visit his Patreon Page and contribute. Also purchase his books about the metric system:

The first book is titled: Our Crumbling Invisible Infrastructure. It is a succinct set of essays  that explain why the absence of the metric system in the US is detrimental to our personal heath and our economy. These essays are separately available for free on my website,  but the book has them all in one place in print. The book may be purchased from Amazon here.


The second book is titled The Dimensions of the Cosmos. It takes the metric prefixes from yotta to Yocto and uses each metric prefix to describe a metric world. The book has a considerable number of color images to compliment the prose. It has been receiving good reviews. I think would be a great reference for US science teachers. It has a considerable number of scientific factoids and anecdotes that I believe would be of considerable educational use. It is available from Amazon here.


The third book is called Death By A Thousand Cuts, A Secret History of the Metric System in The United States. This monograph explains how we have been unable to legally deal with weights and measures in the United States from George Washington, to our current day. This book is also available on Amazon here.

NIST: The Metric Cheese Shop

By The Metric Maven

Extra Bulldog Edition

On Sunday, February 7, 1904, a fire began in Baltimore. It would take 1,231 firefighters to bring the fire under control and when it was over 1,500 buildings would be destroyed. One reason the fire burned unchecked for so long was the absence of national standards for fire-fighting equipment. Fire engines from Philadelphia, Washington D.C., Atlantic City, New York City and other metropolitan areas arrived on the scene. Unfortunately, many fire departments were unable to help as their hose couplings would not fit Baltimore’s fire hydrants. Those fire-fighters could only watch as the fire engulfed more and more of the city. It has been claimed that over 600 different sizes and variations of fire hose couplings existed at the time. This was similar to what French Engineer Charles Renard encountered with balloon cables, which caused him to develop preferred numbers.

The National Bureau of Standards was founded in 1901. Two metrication advocates championed its creation, James H. Southard, and John Shafroth. The Great Baltimore Fire directly demonstrated the need for mandatory standardization of fire-fighting equipment. Furthermore, no standards for building construction (building codes) existed, which allowed the fire to rapidly spread.

One would think that with the lessons of the Baltimore fire, and the establishment of a government agency for standards, that soon fire departments across the country would be induced to adopt national standards for fire-fighting equipment.  On March 22, 1975 a fire started at Unit one of the Browns Ferry Nuclear Reactor.  Plant employees attempted to extinguish the fire despite the fact that professional firemen from Athens, Alabama were on the scene. They mistakenly believed there was a problem with a nozzle at the end of a fire hose. This in turn caused the employees at the plant to request a replacement nozzle from the Athens fire department. The threads on the the fire department’s nozzle were not compatible with those of the fire fighting equipment purchased by Browns Ferry.  Because of this, the nozzle would not stay on the end of the hose.

Well, certainly by now, well over a century after the founding of NIST, we would have national standards for fire couplings and this would not be a problem right?  According to Wikipedia:

A national standard for fire hydrant and hose connections was adopted by the National Fire Protection Association. However, inertia remained, and conversion was slow; it still remains incomplete. One hundred years after the Baltimore Fire, only 18 of the 48 most populous American cities were reported to have installed national standard fire hydrants.[18] Hose incompatibility contributed to the Oakland Firestorm of 1991: although the standard hose coupling has a diameter of 2.5 inches (64 mm), Oakland‘s hydrants had 3-inch (76 mm) couplings.[19]

The idea of standardization strangely seems to be at the bottom of the priority list of many engineers. Those who have seen the movie Apollo 13 were reminded that the the carbon dioxide scrubbers for the Command Module and the LEM were not compatible. Fortunately, they were able to engineer their way to compatibility with a duct-tape solution. One should not rely on good fortune instead of planning and standardization, but in the US hoping for good fortune appears to be the standard back-up plan.

The lack of standardization in the US can and has cost lives. The acronym NIST stands for The National Institute of Standards and Technology. A year ago on May 24th 2013 (2013-05-24), on the Friday before Memorial Day weekend, a time when bureaucrats know that news media is generally not paying attention, the Director of NIST, Patrick D. Gallagher, penned a response to a citizens petition requesting that the metric system be adopted as the sole measurement system in the US. His response can be succinctly stated as he supports a “do your own thing” approach to standardization. Standardization is just too confining of a concept for a standards institute to embrace apparently. The title of his response, in case readers have forgotten, is Supporting American Choices on Measurement.  It is well known to metric advocates that 95% of the world’s population uses the metric system. It would appear from just a cursory inspection of this  fact, that one could, with reasonable certainty, state that the metric system is probably the most successful standard in the history of humanity.  The director of the US government body which is tasked with standards, cannot even agree with a petition that the metric system should be the standard of the US?

When one is confronted with Dr. Gallagher’s assertion that the best standard is a lack of standards, and  I remind you he is the director of the standards body of the US, one’s mind can only interpret the strange dark and contradictory humor of this apparently willful cognitive dissonance in but one way—–by resorting to a Monty Python Metaphor. One of the most famous of the Python’s sketches is The Cheese Shop. A patron walks into a cheese shop and requests some cheese. He requests all different manner of cheeses one by one, red Leicester? Tilsit? Caerphilly? Bel Paese? Red Windsor? Stilton? Ementhal? Gruyere? Norweigan Jarlsburg?….. These requests continue ad nausium until finally:

MousebenderWell let’s keep it simple, how about Cheddar?
WensleydaleWell, I’m afraid we don’t get much call for it around these parts.
MousebenderNo call for it? It’s the single most popular cheese in the world!
WensleydaleNot round these parts, sir.

The exchange continues as the patron continues to request cheese after cheese until finally he states:

MousebenderIt’s not much of a cheese shop really, is it?
WensleydaleFinest in the district, sir.
MousebenderAnd what leads you to that conclusion?
WensleydaleWell, it’s so clean.
MousebenderWell, it’s certainly uncontaminated by cheese.

I could see a similar exchange with the Director of NIST acting as a standards proprietor where one could request mandatory metric industry standards for fire hose couplers, foot measurement, wire sizes, drill bit sizes, sheet metal thicknesses, medical weights and heights of humans, over the counter medical dosages and on and on. Each time the Director would parrot back “no.”  And when one states “it’s not much of a Standards Institute is it?” this phrase might be met with “finest in the US sir.” Indeed, NIST appears to be quite clean, and uncontaminated with metric standards for the US. As in the sketch, the most popular world measurement standard, which is metric (aka Cheddar) is to be found nowhere as a standard in the standards shop.

It is hard to take NIST’s assertion that it is a standards institute seriously when it promotes the notion that a lack of standards is of exceeding utility to the US, and serves as an illustration of  what makes our nation great. NIST is a Metric Cheese Shop, with no Cheddar, and it is completely uncontaminated by cheese as far as I can tell. It is sad that a scientific standards organization has been turned into a worldwide metric joke. At least the Python players had much better writing, and were actually funny while making important points. Patrick D. Gallagher’s response last year was so feckless, it was almost a killer joke to metric advocates. Now stop me if you’ve heard the one about the 600 choices of hose couplings available to the Baltimore fire department.

Postscript:

In 2012, I wrote an essay entitled Feral Units Endanger Our Health. In it I detailed the well known problem of the confusion between teaspoons and tablespoons. I pointed out that confusion between the two units can lead to a 3:1 or 1:3 dosage mistake. I then cited a column from JAMA, The Journal of The American Medical Association, dated September 20, 1902 (page 712), which is reproduced here in the upper left. The 1902 JAMA column advocates for mandatory implementation of the metric system through the Shafroth Bill. It was brought to my attention (thanks Dr. Sunshine) that just two days ago (2014-05-21) JAMA published a column which yet again addresses the same issue over 111 years later. The new column is entitled Group Urges Going Metric to Head off Dosing Mistakes and is authored by Bridget M. Kuehn (pp. E1-E2). The article opens with modern day examples of the problem:

The article goes on to state that “about 3000 to 4000 children are treated in emergency departments each year as a result of medication errors by a caregiver. Poison control centers in the United States also field approximately 10 000 calls each year about dosing confusion,..”

It has been said that a working definition of insanity is to do the same thing over and over and expecting a different outcome. This apocryphal quotation danced in my mind as I read “The CDC worked with the US Food and Drug Administration and the Consumer Healthcare Products Association to develop voluntary guidelines that were published published in 2011.”  Our current answer to all measurement problems in the US is to adopt voluntary guidelines.

The suggestions are all mostly reasonable, such as including a dosage device with medication which does not use “unusual units” (I guess they mean metric?), adding zeros before decimal points (they could also adopt the whole number rule), and “dosing devices that are not substantially larger than the largest recommended dose of the medication.” Further it is stated:

The CDC recommends using only milliliters as a measure for liquid medications to avoid confusion between teaspoons and milliliters and avoiding relatively unfamiliar measures such as drams (a holdover from apothecaries). The CDC wants the dosing device with the appropriate unit of measurement included with the medication to avoid caregivers using a kitchen spoon or other implement that uses a different unit of measurement. Further, the enclosed device should only have the recommended doses labeled on it to make it even easier and safer to use.

 The ISMP (Institute for Save Medication Practices) goes further than the CDC recommendations and argues for expressing a patient’s weight only in kilograms. The “ISMP, explained that because there are 2.2 kg per pound [sic], switching back and forth can lead to 2-fold errors in dosing of medications by weight.”  Once again, in an echo of the 1902 JAMA column they point out that over the counter medications need to conform to these voluntary recommendations. The article also argues against the use of dual-scale dosage devices.

The article goes on:

Stephen C. Mullenix, RPh, senior vice president of public policy and industry relations at NCPDP, said the white paper is “a call to action” for pharmacists to make sure dosing is correct. They can verify with the prescribing physician to ensure they understand the dosing for a particular drug.

I’m sure the authors of the 1902 JAMA column also saw their words as a “call to action.” The big difference between then and now is the Meyer Brothers backed John Shafroth’s bill for mandatory metrication.

The article ends with the problems encountered when using electronic prescriptions. The example cited is of a doctor prescribing in milliliters and when it arrives electronically, the pharmacies software has a default setting to teaspoons. The article ends with a familiar modern refrain:

Converting all dosing and patient weights to metric is going to take time, Cohen acknowledged. But already he noted that soda cans and many other types of packaging already use metric units and that people will learn the conversions over time. “This isn’t something that is going to happen overnight,” he said.

The lack of mandatory metrication in this country is making people sick, costing our economy financially, and showing us for what we are, a nation that is willing to sacrifice people on an altar of ideology rather than acknowledge and engage with reality. Given our history, I suspect that in another 100 years we may still be waiting patiently for these voluntary recommendations to adhere.

Meyer Druggist April 1922

If you liked this essay and wish to support the work of The Metric Maven, please visit his Patreon Page and contribute. Also purchase his books about the metric system:

The first book is titled: Our Crumbling Invisible Infrastructure. It is a succinct set of essays  that explain why the absence of the metric system in the US is detrimental to our personal heath and our economy. These essays are separately available for free on my website,  but the book has them all in one place in print. The book may be purchased from Amazon here.


The second book is titled The Dimensions of the Cosmos. It takes the metric prefixes from yotta to Yocto and uses each metric prefix to describe a metric world. The book has a considerable number of color images to compliment the prose. It has been receiving good reviews. I think would be a great reference for US science teachers. It has a considerable number of scientific factoids and anecdotes that I believe would be of considerable educational use. It is available from Amazon here.


The third book is called Death By A Thousand Cuts, A Secret History of the Metric System in The United States. This monograph explains how we have been unable to legally deal with weights and measures in the United States from George Washington, to our current day. This book is also available on Amazon here.